MAU23101 Introduction to number theory 3 - Power residues, Legendre symbols, and quadratic reciprocity

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2020–2021 Version: October 21, 2020

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Main goal of this chapter

In this chapter, we fix a prime number $p \in \mathbb{N}$.

In $(\mathbb{Z}/p\mathbb{Z})^{\times}$, how many elements are squares?

Example

$$-1$$
 is a square in $\mathbb{Z}/5\mathbb{Z}$, since $2^2 = 4 \equiv -1 \mod 5$.

Or more generally, how many k-th powers $(k \in \mathbb{N})$?

And if $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a *k*-th power, how can we find $y \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ such that $x = y^k$?

Reminder: discrete logarithm

Fix a primitive root $g \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ (\exists since p is prime). Then the powers of g cover all of $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

More precisely, for all $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, there exists $m \in \mathbb{Z}$ such that $x = g^m$, and this *m* is unique mod $\phi(p) = p - 1$.

$$\stackrel{(\mathbb{Z}/p\mathbb{Z})^{\times}}{\sim} \stackrel{\longleftrightarrow}{\longrightarrow} \frac{\mathbb{Z}/(p-1)\mathbb{Z}}{x \longmapsto} m = \log_g x \ . \\ x = g^m \quad \longleftarrow \quad m$$

The discrete log is really a log

Proposition

For all $x, y \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and $m \in \mathbb{Z}$, we have • $\log_g(xy) = \log_g(x) + \log_g(y)$, • $\log_g(x^{-1}) = -\log_g(x)$, • $\log_g(x^m) = m\log_g(x)$, • $\log_g(x/y) = \log_g(x) - \log_g(y)$, • $\log_g(1 \mod p) = 0 \mod p - 1$.

Proof.

Write
$$x = g^a$$
, $y = g^b$. Then
• $xy = g^{a+b}$,
• $x^{-1} = g^{-a}$,
• $x^m = g^{ma}$,

The discrete log is really a log

Proposition

For all $x, y \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and $m \in \mathbb{Z}$, we have

•
$$\log_g(xy) = \log_g(x) + \log_g(y)$$
,

•
$$\log_g(x^{-1}) = -\log_g(x)$$
,

•
$$\log_g(x^m) = m \log_g(x)$$
,

•
$$\log_g(x/y) = \log_g(x) - \log_g(y)$$
,

•
$$\log_g(1 \mod p) = 0 \mod p - 1$$
.

Proof.

Write
$$x = g^a$$
, $y = g^b$. Then
• $x/y = g^{a-b}$,
• $1 = g^0$.

Corollary

Let $k \in \mathbb{Z}$ and $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Then x is a k-th power iff. $\log_g(x)$ is a multiple of k in $\mathbb{Z}/(p-1)\mathbb{Z}$.

Proof.

If
$$x = y^k$$
, then $\log_g(x) = k \log_g(y)$.

If $\log_g(x) = km$ for some $m \in \mathbb{Z}/(p-1)\mathbb{Z}$, then $y = g^m$ satisfies $y^k = g^{km} = x$.

Number of *k*-th powers mod *p*

Theorem

Let $k \in \mathbb{Z}$. Exactly

$$\frac{p-1}{\gcd(k,p-1)}$$

of the p-1 elements of $(\mathbb{Z}/p\mathbb{Z})^{ imes}$ are k-th powers.

Proof.

By discrete log,
$$(\mathbb{Z}/p\mathbb{Z})^{ imes} \longleftrightarrow \mathbb{Z}/(p-1)\mathbb{Z}.$$
 So

$$\begin{aligned} &\#\{x \in (\mathbb{Z}/p\mathbb{Z})^{\times} \mid \exists y \in (\mathbb{Z}/p\mathbb{Z})^{\times} : x = y^{k}\} \\ &= \#\{n \in \mathbb{Z}/(p-1)\mathbb{Z} \mid \exists m \in \mathbb{Z} : n \equiv km \bmod p - 1\} \\ &= \#\{km \bmod p - 1, \ m \in \mathbb{Z}\} \\ &= \mathsf{AO}(k \bmod p - 1) = \frac{p - 1}{\gcd(k, p - 1)}. \end{aligned}$$

Number of *k*-th powers mod *p*

Theorem

Let
$$k \in \mathbb{Z}$$
. Exactly $rac{p-1}{\gcd(k,p-1)}$ of the $p-1$ elements of $(\mathbb{Z}/p\mathbb{Z})^{ imes}$ are k -th powers.

Corollary

The

$$\begin{array}{cccc} map & (\mathbb{Z}/p\mathbb{Z})^{\times} & \longrightarrow & (\mathbb{Z}/p\mathbb{Z})^{\times} \\ x & \longmapsto & x^{k} \end{array} \text{ is } \gcd(k,p-1) \text{-to-1.} \end{array}$$

Example

The number of (p-1)-th powers in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is only 1. Indeed, for all $y \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, we have $y^{p-1} = 1$ by Fermat!

k-th roots mod p

Theorem

If $k \in \mathbb{Z}$ is coprime to p - 1, then every $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ has a unique k-th root, which is

$$\sqrt[k]{x} = x^{\ell}$$

where
$$\ell = (k \mod p - 1)^{-1} \in \mathbb{Z}/(p - 1)\mathbb{Z}$$
.

Proof.

k-th roots mod p

Theorem

If $k \in \mathbb{Z}$ is coprime to p - 1, then every $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ has a unique k-th root, which is

$$\sqrt[k]{x} = x^{\ell}$$

where
$$\ell = (k \mod p - 1)^{-1} \in \mathbb{Z}/(p - 1)\mathbb{Z}$$
.

Example

In
$$\mathbb{Z}/29\mathbb{Z}$$
, $\sqrt[3]{2} = 2^{(3 \mod 28)^{-1}}$. We have $3u + 28v = 1$ for $u = -9$, $v = 1$, so $(3 \mod 28)^{-1} = -9 = 19$.
Mod 29, $2^2 = 4$, $2^4 = (2^2)^2 = 4^2 = 16 = -13$, $2^8 = (2^4)^2 = (-13)^2 = -5$, $2^{16} = (2^8)^2 = (-5)^2 = -4$, whence $\sqrt[3]{2} = 2^{19} = 2^{16}2^22^1 = -4 \times 4 \times 2 = -32 = -3$.
Indeed, $-3^3 = -27 = 2 \mod 29$.

The Legendre symbol: definition and properties

Squares mod p

We now study squares in $\mathbb{Z}/p\mathbb{Z}$.

If p = 2, then $\mathbb{Z}/p\mathbb{Z} = \{0, 1\} = \{0^2, 1^2\}$, so we suppose that $p \ge 3$ from now on. In particular, p is odd.

Joke

2 is the oddest prime.

Squares mod p

We now study squares in $\mathbb{Z}/p\mathbb{Z}$.

If p = 2, then $\mathbb{Z}/p\mathbb{Z} = \{0, 1\} = \{0^2, 1^2\}$, so we suppose that $p \ge 3$ from now on. In particular, p is odd.

Then in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, there are $\frac{p-1}{\gcd(p-1,2)} = \frac{p-1}{2}$ squares, i.e. 50% are squares and 50% are not.

Definition

$$p'=\frac{p-1}{2}.$$

Remark

If $p \equiv 1 \mod 4$, the p' is even. If $p \equiv 3 \equiv -1 \mod 4$, then p' is odd.

Definition (Legendre symbol)

Let $x \in \mathbb{Z}$ or $\mathbb{Z}/p\mathbb{Z}$.

$$\begin{pmatrix} x \\ -p \end{pmatrix} = \begin{cases} 0, & \text{if } x = 0 \mod p \\ +1, & \text{if } x \neq 0 \text{ and is a square mod } p \\ -1, & \text{if } x \neq 0 \text{ and is not a square mod } p. \end{cases}$$

Properties of the Legendre symbol

Theorem

• For all
$$x, y \in \mathbb{Z}/p\mathbb{Z}$$
, $\left(\frac{xy}{p}\right) = \left(\frac{x}{p}\right) \left(\frac{y}{p}\right)$.

•
$$\left(\frac{-1}{p}\right) = (-1)^{p'} = \begin{cases} +1, & \text{if } p \equiv 1 \mod 4, \\ -1, & \text{if } p \equiv -1 \mod 4. \end{cases}$$

•
$$\left(\frac{2}{p}\right) = \begin{cases} +1, & \text{if } p \equiv \pm 1 \mod 8, \\ -1, & \text{if } p \equiv \pm 3 \mod 8. \end{cases}$$

• If $q \neq p$ is another odd prime, then

$$\left(rac{q}{p}
ight) = (-1)^{p'q'} \left(rac{p}{q}
ight).$$

Properties of the Legendre symbol

Example

Is
$$x = -13$$
 a square mod $p = 71$?

$$\begin{pmatrix} -13\\ \overline{71} \end{pmatrix} = \begin{pmatrix} -1\\ \overline{71} \end{pmatrix} \begin{pmatrix} 13\\ \overline{71} \end{pmatrix} = -(-1)^{13'71'} \begin{pmatrix} \overline{71}\\ \overline{13} \end{pmatrix} = -\begin{pmatrix} \overline{71}\\ \overline{13} \end{pmatrix}$$
$$= -\begin{pmatrix} \frac{6}{13} \end{pmatrix} = -\begin{pmatrix} \frac{2}{13} \end{pmatrix} \begin{pmatrix} \frac{3}{13} \end{pmatrix} = \begin{pmatrix} \frac{3}{13} \end{pmatrix}$$
$$= (-1)^{3'13'} \begin{pmatrix} \overline{13}\\ \overline{3} \end{pmatrix} = \begin{pmatrix} \frac{13}{3} \end{pmatrix} = \begin{pmatrix} \frac{13}{3} \end{pmatrix} = +1,$$

so yes!

Application to quadratic equations

Theorem

Let $a, b, c \in \mathbb{Z}/p\mathbb{Z}$ with $a \neq 0$, and $\Delta = b^2 - 4ac$. Then the number of solutions of $ax^2 + bx + c = 0$ in $\mathbb{Z}/p\mathbb{Z}$ is

$$\begin{cases} 2, & if\left(\frac{\Delta}{p}\right) = +1 \\ 0, & if\left(\frac{\Delta}{p}\right) = -1 \\ 1, & if\left(\frac{\Delta}{p}\right) = 0. \end{cases}$$

Proof.

$$ax^{2}+bx+c = a\left(x^{2}+\frac{b}{a}x+\frac{c}{a}\right) = a\left(\left(x+\frac{b}{2a}\right)^{2}-\frac{\Delta}{(2a)^{2}}\right).$$

If $\Delta = \delta^{2}$, that's
 $a\left(x-\frac{-b+\delta}{2a}\right)\left(x-\frac{-b-\delta}{2a}\right);$

as p is prime, one of the factors must vanish.

The Legendre symbol: proofs, part 1/3

Legendre as a group morphism

Lemma

For all
$$x \in \mathbb{Z}$$
, we have $x^{p'} \equiv \left(\frac{x}{p}\right) \mod p$.

Proof.

If $p \mid x$ OK. Suppose now $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Let $y = x^{p'}$. Then in $\mathbb{Z}/p\mathbb{Z}$, we have $y^2 = x^{2p'} = x^{p-1} = 1$ by Fermat, so $(y - 1)(y + 1) = y^2 - 1 = 0$ whence $y = \pm 1$ as p is prime. Now if $x = z^2$ is a square in $\mathbb{Z}/p\mathbb{Z}$, then $y = z^{p-1} = +1$. Conversely, since the polynomial $X^{p'} - 1$ has at most deg= p' roots in $\mathbb{Z}/p\mathbb{Z}$ and since there are p' squares in $\mathbb{Z}/p\mathbb{Z}$, then $y \neq 1$ if x is not a square.

Lemma

For all
$$x \in \mathbb{Z}$$
, we have $x^{p'} \equiv \left(\frac{x}{p}\right) \mod p$.

Corollary

$$\left(\frac{-1}{p}\right) = (-1)^{p'}$$
, and $\left(\frac{xy}{p}\right) = \left(\frac{x}{p}\right)\left(\frac{y}{p}\right)$ for all $x, y \in \mathbb{Z}$.

Proof.

+1, 0, and -1 are all distinct in $\mathbb{Z}/p\mathbb{Z}$ for $p \geq 3$.

The Legendre symbol: proofs, part 2/3

Legendre as a transfer map

Let
$$S = \{1, 2, \cdots, p'\}.$$

Since $\mathbb{Z}/p\mathbb{Z} = \{-p', -p'+1, \cdots, p'\}$, every $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ can be written <u>uniquely</u> as

$$x = \varepsilon_x s_x$$
 where $\varepsilon_x = \pm 1$ and $s_x \in S$.

Proposition

For all
$$x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$
, we have $\left(\frac{x}{p}\right) = \prod_{t \in S} \varepsilon_{tx}$.

Example

Take
$$p = 7$$
, $x = 3$. Then $p' = 3$, $S = \{1, 2, 3\}$,
 $1x = 3 = +3$, $2x = 6 = -1$, $3x = 9 = +2$,
so $\left(\frac{3}{7}\right) = +1 \times -1 \times +1 = -1$.

For each $t \in S$, decompose $tx = \varepsilon_{tx} s_{tx}$.

Lemma

For
$$t_1, t_2 \in S$$
, $s_{t_1x} = s_{t_2x}$ only when $t_1 = t_2$.

Proof.

$$s_{t_{1}x} = s_{t_{2}x}$$
 implies $t_{1}x = \pm t_{2}x$, whence $t_{1} = \pm t_{2}$ as $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, whence $t_{1} = t_{2}$ as $t_{1}, t_{2} \in S$.

Corollary

The map
$$\begin{array}{ccc} S & \longrightarrow & S \\ t & \longmapsto & s_{tx} \end{array}$$
 is bijective.

Corollary

Proof that $\left(\frac{x}{p}\right) = \prod_{t \in S} \varepsilon_{tx}$.

$$\begin{aligned} x^{p'} \prod_{t \in S} t &= \prod_{t \in S} (tx) = \prod_{t \in S} (\varepsilon_{tx} s_{tx}) \\ &= \left(\prod_{t \in S} \varepsilon_{tx} \right) \left(\prod_{t \in S} s_{tx} \right) = \left(\prod_{t \in S} \varepsilon_{tx} \right) \left(\prod_{t \in S} t \right). \end{aligned}$$
Now simplify by $\prod_{t \in S} t$ (legitimate as $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$).

Proof of the formula for $\left(\frac{2}{p}\right)$

In $2 \times 1, \dots, 2 \times p' = p - 1$, the terms having $\varepsilon = -1$ are the ones > p'. Euclidean-divide p = 8q + r, $r \in \{1, 3, 5, 7\}$. Then

$$\# \{ t \in \mathbb{Z} \mid p' < 2t \le p - 1 \} \\ = \# \left\{ t \in \mathbb{Z} \mid 2q + \frac{r - 1}{4} < t \le 4q + \frac{r - 1}{2} \right\} \\ \equiv \# \left\{ t \in \mathbb{Z} \mid \frac{r - 1}{4} < t \le \frac{r - 1}{2} \right\} \mod 2$$

$$\rightsquigarrow \left(\frac{2}{p}\right) = \begin{cases} +1 & \text{if } r = 1, \\ -1 & \text{if } r = 3, \\ -1 & \text{if } r = 5, \\ +1 & \text{if } r = 7. \end{cases}$$

The Legendre symbol: proofs, part 3/3: quadratic reciprocity

Given $x \in \mathbb{R}$, let $\lfloor x \rfloor$ be the largest $n \in \mathbb{Z}$ such that $n \leq x$.

Example

$$\lfloor 3 \rfloor = \lfloor \pi \rfloor = \lfloor 3.99 \rfloor = 3.$$

Euclidean division
$$a = bq + r \rightsquigarrow q = \lfloor a/b \rfloor$$
.

Let $p \neq q$ be primes ≥ 3 .

Proof of quadratic reciprocity

For each $x \in \mathbb{Z}$, Divide $xq = p \left| \frac{xq}{p} \right| + r_x$, $0 \le r_x < p$. • If $0 < r_x < p'$, then $s_{xa} = r_x$, $\varepsilon_{xa} = +1$. • If $p' < r_x < p$, then $s_{xq} = p - r_x$, $\varepsilon_{xq} = -1$. So mod 2 we have $\sum_{x=1} r_x = \sum_{\varepsilon_{xq}=+1} s_{xq} + \sum_{\varepsilon_{xq}=-1} p - s_{xq} \equiv \sum_{\varepsilon_{xq}=+1} s_{xq} + \sum_{\varepsilon_{xq}=-1} 1 + \sum_{\varepsilon_{xq}=-1} s_{xq}$ $=\sum s_{xq} + \sum 1 = \sum t + \sum 1.$ x=1 $\varepsilon_{xa}=-1$ $t \in S$ $\varepsilon_{xa} = -1$ Besides $q \sum_{x \in S} x = \sum_{x=1}^{p'} xq = \sum_{y=1}^{p'} p \left\lfloor \frac{xq}{p} \right\rfloor + \sum_{x=1}^{p'} r_x$ so $\sum_{x=1}^{p'} p \left\lfloor \frac{xq}{p} \right\rfloor \equiv q \sum_{x \in T} x - \sum_{x \in T} r_x \equiv -\sum_{x \in T} 1$

Proof of quadratic reciprocity

so
$$\sum_{x=1}^{p'} p\left\lfloor \frac{xq}{p} \right\rfloor \equiv q \sum_{x \in S} x - \sum_{x=1}^{p'} r_x \equiv -\sum_{\varepsilon_{xq}=-1} 1$$

 $\rightsquigarrow \left(\frac{q}{p}\right) = (-1)^{\sum_{x=1}^{p'} \lfloor \frac{xq}{p} \rfloor}.$

Similarly,
$$\left(\frac{p}{q}\right) = (-1)^{\sum_{y=1}^{q'} \left\lfloor \frac{yp}{q} \right\rfloor}.$$

Proof of quadratic reciprocity

Nicolas Mascot