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Main goal of this chapter

In this chapter, we fix a prime number p ∈ N.

Remark

φ(p) = p − 1.

In (Z/pZ)×, how many elements are squares?

Example

−1 is a square in Z/5Z, since 22 = 4 ≡ −1 mod 5.

Or more generally, how many k-th powers (k ∈ N)?

And if x ∈ (Z/pZ)× is a k-th power, how can we find
y ∈ (Z/pZ)× such that x = y k?
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Reminder: discrete logarithm

Fix a primitive root g ∈ (Z/pZ)× (∃ since p is prime). Then
the powers of g cover all of (Z/pZ)×.

More precisely, for all x ∈ (Z/pZ)×, there exists m ∈ Z such
that x = gm, and this m is unique mod φ(p) = p − 1.

Definition (Discrete logarithm in (Z/pZ)×)

m = logg (x)︸ ︷︷ ︸
∈Z/(p−1)Z

⇐⇒ x = gm︸ ︷︷ ︸
∈(Z/pZ)×

.

 bijection
(Z/pZ)× ←→ Z/(p − 1)Z

x 7−→ m = logg x
x = gm ←− [ m

.
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The discrete log is really a log
Proposition

For all x , y ∈ (Z/pZ)× and m ∈ Z, we have

logg (xy) = logg (x) + logg (y),

logg (x−1) = − logg (x),

logg (xm) = m logg (x),

logg (x/y) = logg (x)− logg (y),

logg (1 mod p) = 0 mod p − 1.

Proof.

Write x = g a, y = gb. Then

xy = g a+b,

x−1 = g−a,

xm = gma,
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The discrete log is really a log

Proposition

For all x , y ∈ (Z/pZ)× and m ∈ Z, we have

logg (xy) = logg (x) + logg (y),

logg (x−1) = − logg (x),

logg (xm) = m logg (x),

logg (x/y) = logg (x)− logg (y),

logg (1 mod p) = 0 mod p − 1.

Proof.

Write x = g a, y = gb. Then

x/y = g a−b,

1 = g 0.
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k-th powers mod p

Corollary

Let k ∈ Z and x ∈ (Z/pZ)×. Then x is a k-th power iff.
logg (x) is a multiple of k in Z/(p − 1)Z.

Proof.

If x = y k , then logg (x) = k logg (y).

If logg (x) = km for some m ∈ Z/(p − 1)Z, then y = gm

satisfies y k = g km = x .
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Number of k-th powers mod p

Theorem

Let k ∈ Z. Exactly
p − 1

gcd(k , p − 1)

of the p − 1 elements of (Z/pZ)× are k-th powers.

Proof.

By discrete log, (Z/pZ)× ←→ Z/(p − 1)Z. So

#{x ∈ (Z/pZ)× | ∃y ∈ (Z/pZ)× : x = y k}
=#{n ∈ Z/(p − 1)Z | ∃m ∈ Z : n ≡ km mod p − 1}
=#{km mod p − 1, m ∈ Z}

= AO(k mod p − 1) =
p − 1

gcd(k , p − 1)
.
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Number of k-th powers mod p

Theorem

Let k ∈ Z. Exactly
p − 1

gcd(k , p − 1)

of the p − 1 elements of (Z/pZ)× are k-th powers.

Corollary

The map
(Z/pZ)× −→ (Z/pZ)×

x 7−→ xk
is gcd(k , p − 1)-to-1.

Example

The number of (p − 1)-th powers in (Z/pZ)× is only 1.
Indeed, for all y ∈ (Z/pZ)×, we have yp−1 = 1 by Fermat!
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k-th roots mod p

Theorem

If k ∈ Z is coprime to p − 1, then every x ∈ (Z/pZ)× has a
unique k-th root, which is

k
√
x = x `

where ` = (k mod p − 1)−1 ∈ Z/(p − 1)Z.

Proof.

(Z/pZ)×
OO

��

x 7→xk // (Z/pZ)×
OO

��
Z/(p − 1)Z m 7→km // Z/(p − 1)Z

k−1m← [m
oo
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k-th roots mod p

Theorem

If k ∈ Z is coprime to p − 1, then every x ∈ (Z/pZ)× has a
unique k-th root, which is

k
√
x = x `

where ` = (k mod p − 1)−1 ∈ Z/(p − 1)Z.

Example

In Z/29Z, 3
√

2 = 2(3 mod 28)−1
. We have 3u + 28v = 1 for

u = −9, v = 1, so (3 mod 28)−1 = −9 = 19.
Mod 29, 22 = 4, 24 = (22)2 = 42 = 16 = −13,
28 = (24)2 = (−13)2 = −5, 216 = (28)2 = (−5)2 = −4,
whence 3

√
2 = 219 = 2162221 = −4× 4× 2 = −32 = −3.

Indeed, −33 = −27 = 2 mod 29.
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The Legendre symbol:
definition and properties
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Squares mod p

We now study squares in Z/pZ.

If p = 2, then Z/pZ = {0, 1} = {02, 12}, so we suppose
that p > 3 from now on. In particular, p is odd.

Joke

2 is the oddest prime.

Then in (Z/pZ)×, there are p−1
gcd(p−1,2)

= p−1
2

squares, i.e. 50%

are squares and 50% are not.

Definition

p′ =
p − 1

2
.

Remark

If p ≡ 1 mod 4, the p′ is even.
If p ≡ 3 ≡ −1 mod 4, then p′ is odd.
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that p > 3 from now on. In particular, p is odd.

Then in (Z/pZ)×, there are p−1
gcd(p−1,2)

= p−1
2

squares, i.e. 50%
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The Legendre symbol

Definition (Legendre symbol)

Let x ∈ Z or Z/pZ.

(
x

p

)
=


0, if x = 0 mod p

+1, if x 6= 0 and is a square mod p
−1, if x 6= 0 and is not a square mod p.
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Properties of the Legendre symbol

Theorem

For all x , y ∈ Z/pZ,

(
xy

p

)
=

(
x

p

)(
y

p

)
.

(
−1

p

)
= (−1)p

′
=

{
+1, if p ≡ 1 mod 4,
−1, if p ≡ −1 mod 4.(

2

p

)
=

{
+1, if p ≡ ±1 mod 8,
−1, if p ≡ ±3 mod 8.

If q 6= p is another odd prime, then(
q

p

)
= (−1)p

′q′
(
p

q

)
.
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Properties of the Legendre symbol

Example

Is x = −13 a square mod p = 71?(
−13

71

)
=

(
−1

71

)(
13

71

)
= −(−1)13′71′

(
71

13

)
= −

(
71

13

)
= −

(
6

13

)
= −

(
2

13

)(
3

13

)
=

(
3

13

)
= (−1)3′13′

(
13

3

)
=

(
13

3

)
=

(
1

3

)
= +1,

so yes!
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Application to quadratic equations
Theorem

Let a, b, c ∈ Z/pZ with a 6= 0, and ∆ = b2 − 4ac . Then the
number of solutions of ax2 + bx + c = 0 in Z/pZ is

2, if
(

∆
p

)
= +1

0, if
(

∆
p

)
= −1

1, if
(

∆
p

)
= 0.

Proof.

ax2+bx+c = a

(
x2 +

b

a
x +

c

a

)
= a

((
x +

b

2a

)2

− ∆

(2a)2

)
.

If ∆ = δ2, that’s

a

(
x − −b + δ

2a

)(
x − −b − δ

2a

)
;

as p is prime, one of the factors must vanish.

Nicolas Mascot Introduction to number theory



The Legendre symbol:
proofs, part 1/3
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Legendre as a group morphism

Lemma

For all x ∈ Z, we have xp
′ ≡

(
x

p

)
mod p.

Proof.

If p | x OK. Suppose now x ∈ (Z/pZ)×.
Let y = xp

′
. Then in Z/pZ, we have y 2 = x2p′ = xp−1 = 1 by

Fermat, so (y − 1)(y + 1) = y 2 − 1 = 0 whence y = ±1 as p
is prime.
Now if x = z2 is a square in Z/pZ, then y = zp−1 = +1.
Conversely, since the polynomial X p′ − 1 has at most deg= p′

roots in Z/pZ and since there are p′ squares in Z/pZ, then
y 6= 1 if x is not a square.

Nicolas Mascot Introduction to number theory



Legendre as a group morphism

Lemma

For all x ∈ Z, we have xp
′ ≡

(
x

p

)
mod p.

Corollary(
−1

p

)
= (−1)p

′
, and

(
xy

p

)
=

(
x

p

)(
y

p

)
for all x , y ∈ Z.

Proof.

+1, 0, and −1 are all distinct in Z/pZ for p ≥ 3.
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The Legendre symbol:
proofs, part 2/3
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Legendre as a transfer map

Let S = {1, 2, · · · , p′}.

Since Z/pZ = {−p′,−p′ + 1, · · · , p′}, every x ∈ (Z/pZ)×

can be written uniquely as

x = εxsx where εx = ±1 and sx ∈ S .

Proposition

For all x ∈ (Z/pZ)×, we have

(
x

p

)
=
∏
t∈S

εtx .

Example

Take p = 7, x = 3. Then p′ = 3, S = {1, 2, 3},
1x = 3 = +3, 2x = 6 = −1, 3x = 9 = +2,

so
(

3
7

)
= +1×−1×+1 = −1.
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Legendre as a transfer map

For each t ∈ S , decompose tx = εtxstx .

Lemma

For t1, t2 ∈ S , st1x = st2x only when t1 = t2.

Proof.

st1x = st2x implies t1x = ±t2x , whence t1 = ±t2 as
x ∈ (Z/pZ)×, whence t1 = t2 as t1, t2 ∈ S .

Corollary

The map
S −→ S
t 7−→ stx

is bijective.
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Legendre as a transfer map

Corollary

The map
S −→ S
t 7−→ stx

is bijective.

Proof that
(

x
p

)
=
∏

t∈S εtx .

xp
′∏
t∈S

t =
∏
t∈S

(tx) =
∏
t∈S

(εtxstx)

=

(∏
t∈S

εtx

)(∏
t∈S

stx

)
=

(∏
t∈S

εtx

)(∏
t∈S

t

)
.

Now simplify by
∏

t∈S t (legitimate as S ⊂ (Z/pZ)×).
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Proof of the formula for
(

2
p

)
In 2× 1, · · · , 2× p′ = p − 1, the terms having ε = −1 are the
ones > p′. Euclidean-divide p = 8q + r , r ∈ {1, 3, 5, 7}. Then

# {t ∈ Z | p′ < 2t ≤ p − 1}

=#

{
t ∈ Z | 2q +

r − 1

4
< t ≤ 4q +

r − 1

2

}
≡#

{
t ∈ Z | r − 1

4
< t ≤ r − 1

2

}
mod 2

 

(
2

p

)
=


+1 if r = 1,
−1 if r = 3,
−1 if r = 5,
+1 if r = 7.
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The Legendre symbol:
proofs, part 3/3:

quadratic reciprocity
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Notation

Given x ∈ R, let bxc be the largest n ∈ Z such that n ≤ x .

Example

b3c = bπc = b3.99c = 3.

Euclidean division a = bq + r  q = ba/bc.

Let p 6= q be primes ≥ 3.
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Proof of quadratic reciprocity

For each x ∈ Z, Divide xq = p
⌊
xq
p

⌋
+ rx , 0 ≤ rx < p.

If 0 ≤ rx ≤ p′, then sxq = rx , εxq = +1.
If p′ < rx < p, then sxq = p − rx , εxq = −1.

So mod 2 we have
p′∑

x=1

rx =
∑

εxq=+1

sxq +
∑

εxq=−1

p − sxq ≡
∑

εxq=+1

sxq +
∑

εxq=−1

1 +
∑

εxq=−1

sxq

=

p′∑
x=1

sxq +
∑

εxq=−1

1 =
∑
t∈S

t +
∑

εxq=−1

1.

Besides q
∑
x∈S

x =

p′∑
x=1

xq =

p′∑
x=1

p

⌊
xq

p

⌋
+

p′∑
x=1

rx ,

so

p′∑
x=1

p

⌊
xq

p

⌋
≡ q

∑
x∈S

x −
p′∑

x=1

rx ≡ −
∑

εxq=−1

1
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Proof of quadratic reciprocity

so

p′∑
x=1

p

⌊
xq

p

⌋
≡ q

∑
x∈S

x −
p′∑

x=1

rx ≡ −
∑

εxq=−1

1

 

(
q

p

)
= (−1)

∑p′
x=1b xqp c.

Similarly,

(
p

q

)
= (−1)

∑q′
y=1b ypq c.
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Proof of quadratic reciprocity

py = qx

pp′

q

q′

p′∑
x=1

⌊
xq

p

⌋
+

q′∑
y=1

⌊
yp

q

⌋
= p′q′  

(
q

p

)(
p

q

)
= (−1)p

′q′ .
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